COMPUTING CURRICULUM MAP

Intent: The Computing department at UTC Heathrow aims to equip students to participate in a rapidly changing world through challenging and engaging topics. Students will develop an understanding and application in the fundamental principles of computer science, Information Technologies (IT), and Cybersecurity by having the opportunity to write programs design webpages, apply technical skills gained in cybersecurity and produce professional digital products. Some of the critical skills include project management, systems analysis, design, and cybersecurity.

Computing and IT skills are a significant factor in enabling children to be confident, creative and independent learners, and we intend that students have every opportunity available to allow them to achieve this. The national curriculum for Computing aims to ensure that all pupils:

- can understand and apply the fundamental principles and concepts of computer science, including abstraction, logic, algorithms, and data representation
- can analyse problems in computational terms, and have repeated the practical experience of writing computer programs to solve such problems
- can evaluate and apply information technology, including new or unfamiliar technologies, analytically to solve problems
- are responsible, competent, confident, and creative information and communication technology, users.

In Computer Science, we are dedicated to ensuring our students leave with the skills to embrace a future of rapidly advancing computer technology fully. Apart from the academic curriculum, students will gain key industry skills through We intend to develop key skills in IT and cybersecurity, which include:

- IT management for business
- Digital technology solutions
- Computer networks and security
- Business computing and entrepreneurship

	Year 12 Computer Science (H446)							
Half Term 1	Half Term 2	Half Term 3	Half Term 4	Half Term 5	Half Term 6			
Structure and function of	Systems Software	Types of programming	Types of programming language	Software development	Programming project			
the processor		language						
Introduce learners to the	Learn the need for, function	Learn the need for and	Object-oriented languages with an	Understand the waterfall	Learn analysis of the Learn, analysis of the proble			
internal workings of the	and purpose of operating	characteristics of a variety of	understanding of classes, objects,	lifecycle, agile	Identification, stakeholders, research problem and			
Central Processing Unit		programming paradigms.	methods, attributes, inheritance,	methodologies, extreme	Learn the design if the solution which includes pr			
(CPU) and the types of	include memory management,		encapsulation, and polymorphism	programming, the spiral	Learn the design if the solution which includes pro- describe the approach to testing.			
processors.	interrupts, and scheduling	Assembly language		model and rapid application	desende the approach to testing.			
	techniques, different types of	programming	Compression, Encryption and	development.				
Learn how different input,	operating systems, BIOS,		Hashing	The relative marite and	Programming development			
output and storage devices	device drivers and virtual	Learn procedural languages	Understand lossy vs lossless	The relative merits and				
can be applied to solutions of different problems.	machines.	and modes of addressing memory.	compression, encoding techniques, symmetric and asymmetric	drawbacks of different methodologies and when	Programming project progression			
RAM, ROM and virtual	Application generation	memory.	encryption as well as different uses	they might be used.				
storage.	Study the nature of	Networks	of hashing.	they might be used.	End of Mock examinations			
storage.	applications, justifying	Learn the characteristics of		Different test strategies,	Revision			
Computational thinking	suitable applications for a	networks and the		including black and white	End of Mock examinations			
Understand what is meant	specific purpose, utilities,	importance of protocols and	Computational methods	box testing and alpha and	End of WICK examinations			
by computational thinking	open or closed source	standards.	Features that make a problem	beta testing				
and be able to apply the	applications and translators.		solvable by computational		Cisco Networking Academy courses, Palo Alto A			
computational thinking		Learn the internet structure,	methods, Problem recognition,		, , , , ,			
methods namely:	Primitive data types, integer,	network security and	decomposition, use of divide and	Databases				
Thinking ahead, abstractly,	real/floating point, character,	threats, use of firewalls,	conquer and abstraction.	Learn flat file and relational				
procedurally, logically,	string and Boolean	proxies and encryption.		databases and terminology				
concurrently.			Learners apply their knowledge of	applied to them namely:				
	Programming techniques	Programming Development	backtracking, data mining,	entity relationship				
	Learn the programming	(Graphical user interface -	heuristics, performance modelling,	modelling, normalisation,				
Writing and following	constructs, recursion, global	GUI)	pipelining, and visualisation to	SQL, referential integrity and				
algorithms.	and local variables.		solve problems.	transaction processing.				
	Use of IDE to develop, debug	Programming techniques						
Cisco Networking	programs and use of OOP	Learn the programming	Data structures	Programming project				
Academy courses, Palo	_	constructs, recursion, global	Learn the following data structures	lessons (Analysis, design and				
Alto Academy	Data structures	and local variables.	arrays, records, tuples, linked-list,	development)				
Cybersecurity courses	Arrays (of up to 3 dimensions),	Use of IDE to develop, debug	graph, stack, queue, tree, binary					
	records, lists, tuples.	programs and use of OOP	search tree, hash table.	Cisco Networking Academy				
	Writing and following		Cisco Networking Academy	courses, Palo Alto Academy				
	algorithms.	January Mock	courses, Palo Alto Academy	Cybersecurity courses				
		examinations	Cybersecurity courses	Cybersecurity courses				
		CAUTIMITUTIONS	cybersecurity courses					
	ı	ı	ı	1	1			

blem and apply in their projects (Problem and specify the proposed solution.

problem decomposition, describe the solution and

Academy Cybersecurity courses

		Year 13 Computer Science (H446)					
Half Term 1	Half Term 2	Half Term 3	Half Term 4	Half Term 5	Half Term 6		
Data types	Boolean Algebra	Programming project progression	March Mock	Final A2 exams	Final A2 examinations		
Represent positive in binary and	Define problems using Boolean	progression	examinations	Revision sessions	Az examinations		
hexadecimal. Use of sign and	logic.	Web technologies	Devision constants		Devision consistent		
magnitude and two's complement	Manipulate Boolean expressions,	Learn HTML and CSS, search	Revision sessions		Revision sessions		
to represent negative numbers in	including the use of Karnaugh maps	engine indexing and PageRank					
binary.	to simplify Boolean expressions.	algorithm.					
		Server and client-side	Programming project				
Representation and normalisation	Learn to derive or simplify	processing.	deadline final				
of floating-point numbers in binary.	statements in Boolean algebra		submission				
	using De Morgan's Laws,						
Bitwise manipulation and masks:	distribution, association,	Revision sessions					
shifts, combining with AND, OR, and	commutation, double negation.						
XOR.							
	Using logic gate diagrams and truth						
How character sets (ASCII and	tables. The logic associated with D						
UNICODE) are used to represent	type flip flops, half and full adders.						
text.							
	Computing related legislation						
Moral and ethical issues	The Data Protection Act 1998.						
The individual moral, social, ethical	The Computer Misuse Act 1990.						
and cultural	The Copyright Design and Patents						
Opportunities and risks of digital	Act 1988.						
technology.	The Regulation of Investigatory						
D	Powers Act 2000.						
Programming project progression	Description of the second second second						
Iterative Development Process.	Programming project progression						
Testing to inform development	Programming project deadline for						
Drogromming project progression	design stage						
Programming project progression Programming project deadline for	November Mock examinations						
the analysis stage							
che allaiysis stage							

Impact: To ensure that all students make significant progress, through continual formative and summative assessments. The assessments will feed into the tracker and teaching and interventions will be affected accordingly to enhance knowledge and understanding. Progress is tracked through central records and classroom teachers will adapt their teaching accordingly.

Pupil engagement in homework, end of topic tests and intervention is also closely monitored with parents/guardians kept up to date through regular contact. Through the curriculum, we aim to develop in our students' an appreciation of computing, IT and cybersecurity and a sense of enjoyment and curiosity for the subject. The success of this will be monitored at the end of Year 11, Year 13 with the external exams and internal assessments in IT. On successful completion of these studies at KS5, hope to have developed confident students who will be able to partake relevant apprenticeships or university.

